Wavelets and Autocorrelations

Tom Trainor November, 2002

Autocorrelations and Power Spectra

autocorrelation distributions:

discrete Fourier transform DFT:

$$\widetilde{A}_{n} = 1/M \sum_{i=1}^{M} m_{i} \cdot m_{i+n}^{*} \text{ periodic system: } m_{i} = m_{i+\tau} \hat{m}_{k} (\delta x) = 1/\sqrt{M} \sum_{i=1}^{M} m_{i} (\delta x) e^{-i\frac{2\pi}{M}k \cdot i}$$

$$A_n = 1/(M-n) \sum_{i=1}^{M-n} m_i \cdot m_{i+n}^*$$
 aperiodic system DFT power spectrum: product of $\hat{P}_k(\delta x) = \hat{m}_k \cdot \hat{m}_k^*$ averages over

$$(\delta x) = \hat{m}_k \cdot \hat{m}_k^*$$
 average

space and events

Wiener-Khinchine theorem, W-K T:

$$\hat{P}_k = \sum_{n=0}^{M-1} A_n e^{i\frac{2\pi}{M}k \cdot n} \qquad A_n = \sum_{k=1}^{M} \hat{P}_k e^{-i\frac{2\pi}{M}n \cdot k} \quad \text{central element} \\ \text{of time-series analysis}$$

- Two forms of autocorrelation relevant to STAR
- Autocorrelations carry all relevant information
- Conventional form of power spectrum, from FT
- Wiener-Khinchine theorem couples power spectrum and autocorrelation

DFT Dual-Space Geometry

- The Fourier transform connects elements in a pair of dual spaces
- Each autocorrelation lies on a difference variable

- Each power spectrum lies on a sum diagonal
- The Wiener-Khinchine theorem connects two diagonals in two ways

Discrete Wavelet Transform

- Consider Haar wavelets and measure density ρ_m on binned 1D space x
- WT is wavelet transform*invertible* transform

DWT 'discrete' transform:

bin number $M_n = 2^n$; n=1,...

'fineness' is index n'Power spectrum:' scale = δx_n

$$\begin{split} P(2\delta x) &= 2/M \sum_{i=1}^{M/2} <\rho_m, F_i(2\delta x) >^2 \\ &= 2/M \sum_{j=1,odd}^{M-1} \{m_j(\delta x) - m_{j+1}(\delta x)\}^2 \end{split}$$

average of products over space and events

- Transform is set of $\langle \rho, F_i \rangle$
- DWT 'power spectrum' is expressed explicitly above in terms of M bin contents m_i at scale δx

Wavelets and Autocorrelations

DWT 'power spectrum:'

connection between DWT 'power spectrum' and autocorrelation

$$\{P_{obj}(2\delta x) - P_{ref}(2\delta x)\} / P_{ref}(2\delta x)\} \approx \frac{\text{net autocorrelations}}{\{\Delta A_0(\delta x) - \Delta A_1(\delta x)\} / \{A_{0,ref}(\delta x) - A_{1,ref}(\delta x)\}}$$

- Expand DWT 'power spectrum,' obtain difference of two elements of the autocorrelation
- Differential WT measure: ratio of *net* autocorrelation scale differences to autocorrelation differences

Wavelet Geometrical Interpretation

net autocorrelation binned at δx

$$\Delta A_n(\delta x) = \int_{n\delta x}^{(n+1)\delta x} \Delta \rho_A(x_\Delta) dx_\Delta \quad \text{bin contents}$$

$$\Delta A_0(\delta x) = \Sigma^2(\delta x) \quad \text{total variance}$$

$$(P_{obj} - P_{ref})/2 = 2\Sigma^2(\delta x) - \Sigma^2(2\delta x)$$
if total variance is homogeneous

if total variance is homogeneous in δx 'power spectrum' is zero

net autocorrelation density

understanding the DWT 'power spectrum' differential measure

- The numerator is a finite difference applied to bin integrals of the netautocorrelation density a 2x scale change
- Same applies to the reference autocorrelation in the denominator over some scale interval it is approximated by variance

Reconstructing the Autocorrelation

Differential measure *numerator*:

$$\Delta P_n(2\delta x_n) \equiv P_{obj} - P_{ref}$$

$$\approx \Delta A_0(\delta x_n) - \Delta A_1(\delta x_n)$$

from this numerator we can reconstruct the net autocorrelation at successively smaller scales, in *octave* steps only

on the other hand, a scaling analysis of variance difference gives the same quantity at arbitrary scale steps

- The numerator of the differential measure can be used to reconstruct the autocorrelation as shown
- Denominator doesn't help

- Information in HI
 collisions is typically not
 on a logarithmic grid
- One learns more and more about less and less

Example

- Elliptic flow simulation
- Direct extraction of 'power spectrum' elements from cosine
- Matches wavelet analysis

DWT/DFT Accounting

- For a 'multiresolution' analysis on 16 bins with 4 scale steps the number of FF amplitudes is 15 (+1)
- The number of independent DFT amplitudes is also 16
- Both are invertible
- The number of aperiodic autocorrelation elements is also 16, on a linear grid

- The DWT 'power spectrum' contains four elements on a logarithmic grid
- From this a *subset* of four autocorrelation points can be reconstructed on the grid
- Information contained in the DWT 'power spectrum' is generally much less than in the DFT autocorrelation

Conclusions

- The discrete wavelet transform (DWT) is a very successful lossless data compression scheme
- In HI applications sums of squared FF (father function) amplitudes define a 'power spectrum'
- This is not a standard power spectrum

- The DWT 'power spectrum' is actually finite differences of the binned autocorrelation at an octave grid of scale points
- The autocorrelation itself or its FT the power spectrum is the optimal representation of two-point correlation structure

The DFT power spectrum is the product of averages
The DWT 'power spectrum' is an average of products